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INTRODUCTION 

Tumours are characterised by a series of genetic anomalies with a proliferative potential that 

leads to cellular transformation.  

Nevertheless, it is believed that the micro-environment that surrounds the tumour (tumour micro-

environment or TME) may also have an important role in the fate of tumour cells, acting on the 

cellular progression or regression.  

The correlations which exist between cancer and inflammation have been documented since 1863, 

when Virchow observed that tumour tissue is often surrounded by inflammatory cells which are 

discovered in the analysis of bioptic samples
i
. 

In immunodeficient mouse models, it has been demonstrated that inflammation may precede the 

development of malignant mesothelioma
ii
. Moreover, epidemiological studies have revealed that 

chronic inflammation caused by chemical or physical agents and the inflammatory and autoimmune 

reactions of uncertain origin predispose people to certain types of tumours 
iii

 
iv

. 

Growing evidence shows that the “inflammation-cancer” connection is not only limited to initial 

processes of tumour development; in fact, all types of cancers would seem to have an active 

inflammatory component in their micro-environment. These experimental and clinical 

observations lead to a greater confirmation that inflation related to cancer may be one of the main 

typical characteristics of neoplasias itself
v
. 

 

 

 

INFLAMMATION 

One of the main factors that characterise the tumour micro-environment is persistent chronic 

inflammation
vi

. 

Tumour-related inflammation is mainly triggered by innate immunity cells (especially 

macrophages), which are present in large quantities in the tumour micro-environment, but it is also 



maintained by stromal cells, such as fibroblasts, by blood vessel cells or by the same tumour cells
vii

. 

Two pathogenic ways correlate cancer and inflammation. 

The intrinsic way is guided by genetic alterations that cause neoplasias. For example, these genetic 

modifications may lead to the triggering of various types of oncogenes, to mutation, to 

rearrangement or to chromosomal amplification, or they may make oncosuppressor genes inactive, 

which initiate an inflammatory process inside the neoplastic cell. 

The extrinsic way, on the other hand, is mediated by inflammatory cells of the innate immunity; we 

are talking mainly of macrophages.  

These two inflammatory paths join the activation of transcription factors, such as the NF-.B, of 

signal transducers, of transcriptional activators 3 (STAT3) and of the hypoxia-inducible factor 1 

(HIF1).  

In the past ten years, the mechanisms through which chronic inflammation supports tumour growth 

have been further delved into. Different soluble inflammatory mediators, either produced by 

macrophages or by tumour cells, act as growth factors that directly stimulate the proliferation of 

tumour cells and increase their resistance to apoptotic stimuli. These include, for example, the 

primary inflammatory cytokines IL-1 and TNF, which activate NF-kB, the key regulator of the 

inflammatory response. 

In tumour cells, NF-kB activates the expression of anti-apoptotic genes (for example, c-IAP, BCL2, 

c-FLIP) and of genes that regulate cellular proliferation (for example, Cyclin, c-Myc).  

In the macrophages, NF-kB activates different genes that encode for cytokines (Egil-1, TNF, IL-6),  

chemokines (i.e., CCL2, CCL5, CXCL8) and reactive enzymes (for example, COX-2), which 

further stimulate the inflammatory response, thus amplifying the recruitment of new inflammatory 

cells in the tumour. 

Cytokine IL-6 activates transcription factor STAT3, another important inflammation and tumour 

development regulator. In tumour cells, STAT3 stimulates cellular survival and proliferation, whilst 

in the macrophages its persistent activation leads to immune suppression. 

Besides, little is known about the mechanisms that lead to tumour initiation within the context of 

chronic inflammation. There is evidence that inflammatory mediators such as cytokines, reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) lead to epigenetic alterations in pre-

cancerous cells, cause the silencing of onco-suppressor genes and the inhibition of DNA repairing 

mechanisms
viii

. Certain inflammatory cytokines and other mediators increase the survival of tumour 

cells, the motility and invasiveness, also encouraging the angiogenic capacity, which is crucial for 

allowing oxygen, nutrients and growth factors to reach tumour cells
ix

 
x
. 

In this way, chronic inflammation favours the accumulation of DNA mutations and increases the 

proliferation potential of the cells. It is believed that this cancerogenesis process induced by 



inflammation may require several years, as a consequence of a lack of balance between continuous 

casual mutations and DNA repair, cellular death and cellular proliferation, recognition or escape 

from control of the immune system. 

While in the past 15 years incredible progress has been made in terms of understanding the 

mechanisms through which cancer-related inflammation might have a negative impact on tumour 

progression, little is known to this day with regards to the effects of chronic inflammation on 

cancerogenesis. It is believed that long-term exposure to inflammatory mediators (cytokines, 

reactive oxygen and nitrogen species) causes genotoxic damage to the DNA, constantly putting 

pressure on the DNA repair system. Cells where the DNA repair response is inhibited or is less 

efficient are at high risk of genomic instability and are more predisposed to malignant 

transformation. At present, little is known about the mechanisms underlying these processes. 

 

 

 

MACROPHAGES ASSOCIATED WITH TUMOURS 

Macrophages associated with tumours (TAM) are innate immunity cells that are abundantly 

present in tumours. They are key initiators of the persistent inflammation present in the tumour 

micro-environment (TME), since they are the main producers of reactive mediators that perpetuate 

and amplify the inflammatory cascade
xi

 
xii

.  

A typical characteristic of macrophages is their functional plasticity. In fact, the acquisition of their 

various functions is precisely dictated by specific local stimuli that activate separate functional 

processes: actually, they are not only able to fight the onset and progression of the tumour but also 

lead to the start of the tumour as well
xiii

.  

Macrophages can be classified, in a simplistic way, as M1 or classic macrophages, having the 

tumour-suppressor phenotype and capable of product large quantities of inflammatory cytokines 

and M2, or alternative macrophages that have the immune-suppressor phenotype and control the 

trophic activity of tissues as well as the angiogenesis
xiv

 
xv xvi

. 

Macrophages perform many actions aimed at encouraging tumour progression: they produce 

growth and survival factors for tumour cells and the vascularisation (neoangiogenesis), they 

contribute to the deterioration of the extracellular matrix and to the remodelling, they facilitate the 

invasion of tumour cells and the metastasis, and they produce immunity mediators that suppress 

anti-tumour activity
xvii

 
xviii

. 

Consequently, the quantity of TAM in most solid and haematological tumours has been associated 

with an unlucky prognosis and resistance to therapies
xix

. 

The TAMs have a limited cytotoxic action against neoplastic cells and, according to certain studies, 



it appears that they are in fact capable of encouraging tumour proliferation, the deterioration of the 

extra-cellular matrix and the ability to elude the control of the immune system
xx
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. 

Moreover, the presence of TAMs in tumour tissue is associated with the quick rate of 

progression
xxv

 
xxvi

. Hence, macrophages constitute a source of inflammatory mediators at the 

tumour level. This also occurs for MPM, although it has been reported in literature that the 

mesothelial cells of the pleura are also capable of producing reactive mediators in response to 

asbestos fibres.  

On the basis of functional activities and gene expression profiles, some researchers have 

demonstrated that TAMS are polarised macrophages M2
xxvii

. Moreover, TAMs have been 

characterised in various mouse tumour models, and the inflammatory paths that are involved the 

most in the pro-tumour activity have been defined
xxviii

 
xxix

. 

In recent years, great emphasis has been placed in identifying macrophages at the tumour site for 

therapeutic purposes. Moreover, it has been demonstrated that inhibiting these cells in 

experimental contexts would limit tumour growth and metastatic spreading
xxx

. Inhibiting the 

recruitment of monocytes at the tumour sites, in combination with chemotherapy, appears to 

significantly increase the efficacy of the therapeutic treatment in mice with tumours. This is 

probably due to the fact that the presence of TAMs and myeloid cells is also strongly implicated in 

the ineffectiveness of anti-tumour therapies
xxxi

 
xxxii

 
xxxiii

. Recent clinical studies have also provided 

interesting results, through the use of inhibitors that limit the action of the chemokines
xxxiv

. 

 

 

 

PLEURAL MESOTHELIOMA 

Pleural mesothelioma is a pathological condition characterised by chronic persistent inflammation. 

It is a very aggressive tumour caused by the neoplastic transformation of the mesothelial cells 

that line the body’s serous cavities and internal organs; in 80% of the cases it is of pleural origin and 

it is defined as malignant pleural mesothelioma (MPM)
xxxv

. MPM is usually discovered in the 

advanced stage, since there are no markers that allow early diagnosis
xxxvi

.  Malignant 

mesothelioma is almost insensitive to current chemotherapy, and still has a very limited global 

survival rate.  

It is a highly malignant disease associated with long-term exposure to asbestos or other 

particulate fibres
xxxvii

. In fact, its incidence is strongly linked to exposure to airborne asbestos 

fibres
xxxviii

. Once the asbestos enters the lungs, the macrophages are locally recruited and activated 

in an attempt to eliminate the fibres, but they are unable to carry out this “clean up” due to the non-

degradable nature of asbestos. This failed deterioration of asbestos fibres by the macrophages leads 



to a state of chronic inflammation and to a fibrogenic response by the fibroblasts, which in the 

long term facilitates the transformation of healthy pleural cells into tumour cells
xxxix
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. 

Hence, the inhaled fibres are not degradable, and they cause a persistent local state of inflammation. 

Due to the volatile nature of particulate fibres, the people who work directly with asbestos are not 

the only ones at risk, as entire populations who live in areas where asbestos was present may also be 

affected. Therefore, it is possible to state that malignant mesothelioma is a tumour that is certainly 

related to chronic inflammations
xliii

.  

Genetic anomalies tied to MPM have been widely studied. In fact, a wide range of genetic 

mutations has been identified, including, for example: BAP1, CDKN2A, Ras, Wnt, p16, TP53, 

SMACB1, NF2, PIK3CA
xliv

 
xlv xlvi

.  

This wide spectrum of genetic mutation indicates that the anomalous proliferation of the neoplastic 

cells is not caused by the oncogenic activity of one or of some oncogenes, as it happens in many 

types of tumours (for example, KRAS and pancreatic or lung cancer, BRCA1 and breast cancer)
xlvii

 

xlviii
. In this case, we are dealing instead with the result of casual damage to the DNA, due to an 

upstream condition (for example, long-term inflammation), confirming that inflammation is indeed 

one of the main causes of carcinogenesis
xlix

 
l
. 

It is known that certain polymorphisms of genes related to inflammations cause a predisposition to 

the disease. For example, SNPs in Toll-like receptors have been found to be related to infections 

and chronic inflammatory diseases
li
. For example, the SNPs of gene NLRP3 appear to be related to 

susceptibility to the HIV virus, to Crohn’s Disease, to rheumatoid arthritis and to diabetes
lii

 
liii

 
liv

. 

Girardelli et all have demonstrated that in patients suffering from MPM, the SNPs in gene NLRP1 

are more frequent
lv

. 

Several studies have reported the expression of inflammatory mediators in MPM
lvi

 
lvii

 
lviii

. 

Hegmans JP et all have demonstrated that the inflammatory cellular infiltrate of MPM is full of 

macrophages, thus implying that these cells play a crucial role in the biology of the mesothelioma
lix

.  

It is well known that asbestos fibres cause the inflammatory sublayer
lx

 
lxi

. The recruitment of the 

macrophages is also induced by the adipocytes involved in the inflammation caused by the presence 

of asbestos. In fact, some researchers have demonstrated that adipocytes exposed to asbestos fibres 

are capable of producing inflammatory cytokines (IL6 and CCL2), which in turn draw and recruit 

macrophages in the inflammatory micro-environment.  

However, at present a complete characterisation of the inflammatory paths involved in MPL is still 

not available. 

 

 

 



CONCLUSIONS 

Inflammation is present in the micro-environment that surrounds the tumour tissue and, 

probably, it is not simply a cellular characteristic surrounding the neoplasias, but instead appears to 

be and active component involved in the carcinogenesis. 

Several studies aim to study the mechanisms that lead to the neoplastic transformation of various 

neoplasias and, among these, of mesothelioma, focusing on the inflammatory response. 

Researchers are currently attempting to understand which inflammatory paths are most involved in 

the onset and progression of mesothelioma, and if there are specific characteristics that can explain 

why the selected individuals develop the disease. 

It would be crucial to identify subjects at a high risk of developing mesothelioma, and to find out 

more about chronic inflammation and its capacity to create a predisposition to carcinogenesis.  

This research may lead to the discovery of new molecular targets useful for therapy or for 

prevention drugs
lxii

.  
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